Demographic history and recombination
shape the genomic landscape of a
broadly distributed Pacific salmon
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Local adaptation and beyond

Genome scans for evidence of natural
selection are now routine
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On the importance of demography

- For North American biota,
the importance of
glaciations has been well-
documented
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On the importance of demography

- For North American biota,
the importance of
glaciations has been well-
documented

- New genomic data can
help elucidate complex
demographic histories
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On the importance of demography

. For North American biota, Expansion load:

the importance of
glaciations has been well-
documented
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Coho salmon Oncorhynchus kisutch

| Native range
I Introduced pops. Crawford & Muir 2008




Coho salmon Oncorhynchus kisutch




Objectives:

1. Test alternative hypotheses of number and location of glacial
refugia

Beringia i

Haida Gwaii

Cascadia *

:!f m:ﬁ'ﬂ

=

2. Describe the impacts of post-glacial reclonization on the
accumulation of deleterious variants

3. Test the effect of recombination on the efficacy of selection



Sampling
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. 82K SNPs after QC filters e Y

Whole genome re-seq Y

- 71 ind/14 sampling locations

SNPs called with GATK (30X)
Outgroups (3 species)

O G. tH b GBS SNP calling: github.com/QuentinRougemont/stacks_workflow
- itnu Full genomes: github.com/QuentinRougemont/gatk haplotype



GBS based results:

PLOS GENETICS
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Evidence for a single refugium south of ice sheets:

WGS data :
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- Genetic diversity generally
decreases from South to
North

- Pronounced reduction in  Hsoos
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population declines 0.03
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Southern population are more ancestral:

WGS data :

R = 74 p <0.0001***, slope = 7.05e-05
- Genetic differentiation

follows a pattern of IBD

0.4{ R? without Thompson = .87 p < 0.0001***, slope = 7.4e-05

- Ancestral population

located in Southern Areas .
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Population bottleneck toward the north

WGS data :
1.0
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Support for the south-north topology

WGS data :
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Whole genomes demography

WGS data : _ _
Sequentially Markovian Coalescent (SMC++)
- Rapid demographic : — BER KWE POR = SAL
expansion after deglaciation eSSl E—bnst e
'IDE = KLA

- Bottleneck intensity ~
follows geography

Present Past



Formal testing of gene flow from a second
refugial population

Hypothesis :
More than one refugia existed

Ice Sheet

Cascadia {.

Prediction :
Secondary-Contact models should be favoured

past
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Formal testing of gene flow from a second

refugial population

Hypothesis :

More than one refugia existed

during the last glacial period

coc o i ’ﬁ,:.a,_?_;«'a-‘
Beringia "ttt -

Cascadia {.

Prediction :

Secondary-Contact models should be favoured

past

present

Tsc

present

One single refugia existed
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Population expansions
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Formal testing of gene flow from a second
refugial population

past

[ ]

present

S AM IM SC
\ l

migration : homogengous vs heterogeneous (m)
Barriers to gene flow

Genetic drift : homogeneous vs heterogeneous Ne (Linked selection)

=P \Vith/Without Growth (expansion/contraction) in daughter and ancestral populations

== 3 outgroups

== Comparison between: Southern pop vs Alaska
Southern pop vs Thompson
Alaska vs Thompson

==  $adi : 28 scenario * 20-30 replicates

Roux et al. 2013, 2014 ; 2016
Tine et al. 2014



Demographic history — Summary v2

GBS data :
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Demographic modelling suggest a role for
linked selection



Demography and recombination may
influence the deleterious load
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Demography and recombination may
influence the deleterious load

WGS data :

Prediction : Increased load in bottlenecked populations
Increased load at range margins

Deleterious mutations ~f(recombination)



Demography and recombination may
influence the deleterious load

WGS data :

Measuring load :

nN/aS (e.g. Chen et al. 2017)
Selection efficacy : (e.g. Galtier, 2016)
Rate of (non)-adaptative non-synonymous amino-acid substitutions :
w&w

Proportion of adaptative non-synonymous amino-acid substitutions :

a = w /(dN/dS)

3 outgroups + whole genome reseq. from available sp.



Post-glacial recolonization explains variation In

deleterious load
WGS data :
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Post-glacial recolonization explains variation In

deleterious load
WGS data :
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Post-glacial recolonization explains variation In
deleterious load

WGS data :
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Post-glacial recolonization explains variation In

deleterious load
WGS data :
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Post-glacial recolonization explains variation In

deleterious load
WGS data :
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Effective pop. size explains variation in

deleterious mutation load
WGS data :
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Effective pop. size explains variation in

deleterious mutation load
WGS data :
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Effective pop. size explains variation in

deleterious mutation load
WGS data :
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Effective pop. size explains variation in selection
efficacy

WGS data :
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ROB
0.2
L
o4 Region
® Alaska
BC
@ California
o SAL R2= 26 0 <0.03 & Cascadia
@® HaidaGwaii
‘DR
sans MSL: @ Thompson
R? = .47 p <0.006
o é =] o
= o2 =] o
= L= o ==
w0 o ] od
od o o] 3

Ne

—p LOWwer efficacy of selection with decreased Ne



How about recombination ??

Prediction :
Deleterious mutations are expected to be negatively correlated with
recombination

Additional
specie

Other species
ongoing...



Recombination may also influence the
deleterious load

WGS data :

Measuring recombination

GC content at 3rd codon position (GC3) :
Recombination proxy due to gBGC favoring GC over AT
(Singhal et al. 2015 ; Leroy et al. 2021)



Regions of low recombination have elevated
numbers of deleterious mutations:

WGS data :
Less efficient purging in areas of low recombination
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Regions of low recombination have elevated
numbers of deleterious mutations:

WGS data :
Less efficient purging in areas of low recombination

0.6

0.4
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Maybe biased by gBGC?

gBGC: favors GC over AT

Solution: work on GC conservative
sites (G <-> C, A<->T) not affected
By gGBC

(see Duret & Galtier 2009)
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Regions of low recombination have elevated
numbers of deleterious mutations:

WGS data :
Less efficient purging in areas of low recombination
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Regions of low recombination have elevated
numbers of deleterious mutations:

WGS data :

nn/“s

Less efficient purging in areas of low recombination
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Load in areas of residual tetraploidy

Salmon: Whole Genome Duplication ~ 80-100 My Ago. (Autotetraploidization)

Spotted gar (Lepisosteus oculatus)

Zebrafish (Danio rerio)

Ts3R
—O— Stickleback (Gasterosteus aculeatus)

Pike (Esox lucius)

Salmonids

Coregonus + Prosopium + Stenodus

Thymallus
Ss4R

Brachymystax + Hucho

Oncorhynchus + Salvelinus + Salvethymus

ra = = Atlantic salmon

| | | | oo e I (Salmo salar) Lien et al. 2016
400 300 200 100 0

Million years ago

Rediploidization ongoing (Tetrasomic inheritance).

9 pairs of chromosome arms with residual tetraploidy (homeologuous arms)



Load in areas of residual tetraploidy

Salmon: Whole Genome Duplication ~ 80-100 My Ago. (Autotetraploidization)

Spotted gar (Lepisosteus oculatus)

Zebrafish (Danio rerio)

Ts3R
—O0— Stickleback (Gasterosteus aculeatus)

Pike (Esox lucius)

Salmonids

Coregonus + Prosopium + Stenodus

Thymallus
Ss4R

Brachymystax + Hucho

Oncorhynchus + Salvelinus + Salvethymus

Atlantic salmon
(Salmo salar) Lien et al. 2016

| 1 | | |
400 300 200 100 0

Million years ago

Prediction:
Higher Ne in areas of residual tetraploidy (4N) leads to more efficient purifying
selection



count

Higher load in areas of residual tetraploidy

300- — = mean load by pop in areas of AR
residual tetraploidy (4500 genes) |11 |\ »
LI |
[ observed in 1400 random set
of 4500 diploid genes
2001
100 1
u,. s
0 o )
o o o
Tt/ s

Also supported by decreased proportion of adaptive substitution

Higher load
More pseudogenes?

More TE? (identification ongoing)

Diploid Residual Tetraploid
chromosomes



Not supported in Rainbow Trout ?

WGS data :
150+ 100
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Conclusions:

- Survival in a single refugium south of the ice sheets explains broad scale patterns
in the distribution of genetic diversity

Post-glacial recolonization & linked selection had a detectable impact on the
mutation load

- Both Recombination and Ne influence the efficacy of purifying selection and the
load




Conclusions:

- Survival in a single refugium south of the ice sheets explains broad scale patterns
in the distribution of genetic diversity

Post-glacial recolonization & linked selection had a detectable impact on the
mutation load

- Both Recombination and Ne influence the efficacy of purifying selection and the
load

* Focusing only on local adaptation ignores the fundamental importance of deleterious
mutations and a greater understanding of the historical and genomic factors driving
their distribution and frequency is needed
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